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ABSTRACT 

The first law of thermodynamics is applied to a calorimeter model in which the reaction 
domain is surrounded by a heat-conducting domain through which heat is exchanged linearly 
with constant-temperature surroundings. Equations describing the quasi-isothermal operation 
of the calorimeter are derived. 

It proves possible to represent the temperature change of the reaction domain or the wall 
of the reaction domain for any thermal reaction in terms of the rate of enthalpy change and 
temperature response caused by impulse or step power input. The proportionality relation 
between the change in the enthalpy and the time integral of the deviation of the temperature 
from the convergence temperature is obtained. The proportionality constant is shown to 
depend only on the geometrical structure and the physical nature of the heat-conducting 
domain and to be independent of those of the reaction domain. 

It is also shown that when the temperature and the concentrations of the reactants in the 
reaction domain are uniform, the thermodynamic state of the reaction domain can be 
represented by two variables, the extent of reaction and the temperature, thus providing 
theoretical bases for the deconvolution methods used in thermokinetics. 

Equations describing a twin calorimeter system are also derived and shown to have the 
same forms as those for the single calorimeter system. 

Some problems in the recent treatment of a time-varying calorimeter system are discussed, 
and the advantages of an isothermal calorimeter with regulation of power are illustrated. 

INTRODUCTION 

Both the isoperibol calorimeter and heat conduction calorimeter consist 
of essentially common parts, a reaction vessel, a heat-conducting interspace 
and a surrounding thermostat, which allow heat transfer to occur between 
the reaction vessel and the thermostat. However, there is an important 
difference between the two calorimeters. In the operation of the isoperibol 
calorimeter, the heat transfer between the reaction vessel and the surround- 
ing thermostat is kept as small as possible, and essentially the temperature 
difference between the beginning and the end of the thermal reaction period 
is measured. On the other hand, the heat transfer between the reaction vessel 
and the thermostat of the heat conduction calorimeter is made large so that 
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heat developed in the vessel dissipates rapidly into the thermostat. In the 
operation of the heat conduction calorimeter, the temperature difference 
between the vessel and the thermostat is continuously observed. The 
calorimeter is usually operated under conditions in which the temperature 
difference remains small, and is widely used for the study of slow reactions. 

The isoperibol calorimeter is almost adiabatic and can be called a 
quasi-adiabatic calorimeter. The heat conduction calorimeter is operated 
under almost isothermal conditions and can be called a quasi-isothermal 
calorimeter. This paper deals with a simple basic model of a calorimeter 
with linear heat flow over the surface of the reaction vessel and presents 
fundamental formulae for the use of such a calorimeter during quasi-isother- 
mal operation. 

APPLICATION OF THE LAWS OF THERMODYNAMICS TO CALORIMETRY THE- 
ORY 

Only a few authors have paid attention to the application of the laws of 
thermodynamics to calorimetry theory. Wilhoit applies the first law of 
thermodynamics to a calorimetric system and discusses the treatment of the 
experimental data [l]. West and Churney propose a theory of isoperibol 
calorimetry in terms of the first law of thermodynamics [2,3]. Equations 
which are not based on the laws of thermodynamics have difficulty in 
distinguishing heat from internal energy or enthalpy. For example, the 
equation for adiabatic calorimetry 

Q=CAT 0) 
is usually described in many text-books, where C is the heat capacity, AT is 
the measured temperature change and Q is usually referred to as the total 
quantity of “heat” evolved in the process. Equation (1) is not a result of the 
application of the laws of thermodynamics to calorimetry. In fact, eqn. (1) 
appears to be in conflict with the adiabatic condition which requires Q = 0 
in the calorimeter, and gives a positive temperature change for an endother- 
mic process and a negative one for an exothermic process, contrary to 
thermodynamic terms. 

In this paper, the theory of heat conduction calorimetry presented in the 
previous paper [4] is reconstructed in terms of the first law of thermody- 
namics, assuming a linear heat flow between the wall of the sample vessel 
and that of its constant-temperature surroundings. 

CALORIMETER MODEL 

The calorimeter model used is represented schematically in Fig. 1. It 
consists of four domains, Do-D,. Do is the surrounding area at constant 
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Fig. 1. Calorimeter model. D,, S,, surrounding area of constant temperature and its surface; 
D,, heat-conducting domain; D,, S,, wall of reaction domain and its external surface; D,, 
reaction domain. 

temperature and S, is its internal surface. D, is the reaction domain in 
which the thermal reaction under investigation occurs and D, is the wall of 
the reaction domain which has a uniform but time-dependent temperature. 
S, is the external surface of the wall. D, is the heat-conducting domain in 
which heat flow occurs between the surfaces S, and S,. In this model, the 
following assumptions are introduced: 

(a) Thermal physical properties such as heat capacity, thermal conductiv- 
ity and thermal diffusivity of the domains D, and D, outside the reaction 
domain are constant and independent of time during the thermal reaction 
process under investigation. 

This assumption requires that the ranges of the temperature changes of 
the calorimeter system remain small during operation and that the variation 
of the physical properties with temperature can be neglected. 

(b) Linear heat flow over the external surface S, takes place. 
(c) The temperature of D, is uniform. 
(d) The temperature gradient aT(r, t)/an in the direction of the out- 

ward-drawn normal to the surface S, is uniform over S, where T(r, t) 
denotes the temperature at a point represented by position vector r at time t. 

(e) The initial temperatures of the system are equal to the convergence 
temperature (steady-state temperature) T,(r) independent of time. 

CASE 1. UNIFORM TEMPERATURE AND CONCENTRATIONS 
INSIDE THE REACTION DOMAIN 

OF REACTANTS 

We add the following new assumptions to the previous assumptions: 
(f) The temperature of the reaction domain D, is uniform and equal to 

that of D,, and the concentrations of reactants in D, are also uniform. 
(g) The thermal physical properties of D, are independent of time during 

the thermal reaction process under investigation. 
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Application of the first law of thermodynamics to D, + D, inside the 
surface S, for an infinitesimal time interval dt gives 

dU=dQ+dW (2) 

where dQ and dW represent the heat and the work received by D, + D,, 
and dU is the increment of the internal energy of D, + D,. If the thermal 
reaction takes place in D, at constant pressure, we may write 

dH=dQ+dW (3) 

where d H is the increment of the enthalpy of D, + D,. As experiments 
using heat conduction calorimetry are usually carried out at atmospheric 
pressure, we prefer to start our discussion from eqn. (3). Similar results can 
also be obtained when we start from eqn. (2). Dividing both sides of eqn. (3) 
by dt gives 

dH dQ dW 
-=z+x 
dt (4) 

Considering assumption (f) and the constant pressure under which the 
thermal reaction occurs in D,, we can determine the thermodynamic state of 
D, + D, by two variables, the temperature T and the extent of reaction 6. 
Then we have 

dH 8H d,$ i3H dT 

dt =xdt+ aTdt 
= u(t) + cg 

where 

(5) 

is the rate of enthalpy change caused by a reaction or a transformation and 

i3H 
C=w (7) 

is the heat capacity of D, + D,. 

is the heat flow through the surface S,, where A is the thermal conductivity 
of D, and A is the surface area of S,. 

dW 
- =P,+P(t) 
dt (9) 

is the power produced at D, + D,, where P,, is the time-independent part 
caused by electric currents in the resistance thermometer and mechanical 
stirring, and P(t) is the transient time-dependent part due to calibration or 
compensation. Equation (4) can be written as follows: 

o(t)+C$=AAg+&+I’(t) (10) 
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When u(t) = 0 and P(t) = 0, the calorimetric system reaches steady state 

and eqn. (10) becomes 

where T,(r) is the convergence temperature of the system. Subtracting eqn. 
(11) from eqn. (lo), we obtain 

u(t) + cg = AA: + P(t) (12) 

where 

t9(r, t) = T(r, 1) - T,(r) (13) 

If r E D, + D,, 7’(r, t) and 0(r, t) are independent of r (assumption (f)). If 
r E D,, 8(r, t) = 0. 

We can now write 

takes place in D, and 

U(r)++hA~ 

eqn. (12) for three special cases. When the reaction 
no transient work is done, eqn. (12) becomes 

(14) 

When no reaction occurs and impulse work is done, P(t) = S(t), eqn. (12) 
becomes 

c$f 44g +8(t) (15) 

where g = g(r, t) is the temperature response for the impulse power P(t) = 

S(t) and S(t) is the delta function of t. When no reaction occurs and step 
work is done, P(t) = &u(t), eqn. (12) becomes 

(16) 

where f=f(r, t) is the temperature response for step power input W,u( t) 

and u(t) is the unit step function 
u(t) = 0 for t < 0 
u(t) = 1 for t > 0 
Taking the Laplace transform of 
we get 

eqns. (14) (15) and (16) with respect to t, 

E(.s) + CsB(r, s) = AA 
a#(,, s) 

an 04’) 

(15’) 

and 

(16’) 
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where U(s), @r, s), g(r, s) and f(r, s) are the Laplace transforms of u(t), 
O(r, t), g(r, t) and f(r, t), respectively and s is the parameter. From eqns. 
(14’)-(16’) we obtain the following relations 

B(r, s) = -C(s)g(r, s) W) 

8(r, s) = -sE(s)f(r, s)/wo (17b) 

dr, s) =d(r, s)/wo (174 

Taking the inverse Laplace transforms of eqns. (17a-c), we obtain 

0(r, t) = - J,‘v( T)g(r, t - T) dr (18a) 

and 

g(r 
2 

t) - 1 df(c t) 
WO dt 

w-4 

(184 

Equations (17a-c) and (18a-c) are the fundamental equations for the 
deconvolution methods in thermokinetics [5-71. 

Next, we try to derive a formula for the enthalpy change AH, caused by 
the reaction or the transform. Integrating both sides of eqn. (18b), we obtain 

Using a step function 
u(t - T) = 0 for 7 > t 

u(t - T) = 1 for 7 < t 
we obtain 

J ‘U(,)af(t-7)d7= my(7)af(t-7)U(f-7)d7 
0 at J 0 at 

(1% 

Substituting eqn. (20) into eqn. (19) and interchanging the order of the 
integrals on the right hand side of eqn. (19), we have 

If we then put 17 = t - 7, the integral in the brace in eqn. (21) becomes 

/ 
maf(;;‘)u(t-.)dt=j- a m af (71) COqz+)dq=jo all dn =fb) 

0 -7 

(22) 
From eqns. (19), (21) and (22), we obtain 

J ?‘(t) dt = - - f(4 * J u(7) dr= - fOAHE 
0 wo 0 WO 

(23) 
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where 

AH[= ?J t dt 
J () 0 

is the enthalpy change caused by the thermal reaction. 
Under constant power P(t) = wo, the calorimetric system reaches a 

steady state and eqn. (16) becomes 

O=hAdf(dr;lm) +w, (24 

We can then add the new assumption (h) as follows. 
(h) Linear heat flow takes place in the whole space of the domain D, and 

the surface area A is a function of a variable r. 
We then have a solution for eqn. (24), thus: 

fh 
SI dn +F _wg 

J s, A - Aa 

where 

1 

1 

s, dn -_= - 
a 

s2 A 

(26) 

and rl and r2 are the position vectors on S, and S,, respectively. When the 
surface is spherical, eqn. (26) becomes [8] 

1 

J 

rl dr (r1 - %) -= -= 
a r, 47rr2 4mr,r, 

From eqns. (23) and (25), we get 

?9(t) dt 

= -Aa J ?9( t) dt 
0 

CASE 2. NON-UNIFORM TEMPERATURE INSIDE THE REACTION VESSEL 

In this case, we drop assumptions (f) and (g) made in CASE 1. Applying 
the first law of thermodynamics to D, + D,, we can write 

dH, 
dt+C2g=AAg+Po+P(t) (29) 
where H3 = H3( t) is the enthalpy of D, and C, is the heat capacity of D,. 
Hereafter we can proceed in a manner analogous to that in CASE 1. 
Rearranging eqn. (29), we obtain 

h(t) + C2g = hAg + P(t) (30) 
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where 

dH3 w = dt (31) 

is the rate of change in the enthalpy of D, and 8 is defined in eqn. (13). 
Equation (30) is similar to eqn. (12) in form and we can derive the following 
formulae similar to those in CASE 1 using the same process. 

e(r, s) = -h(s)g(r, s) (324 

8(r, s) = -sh(s)j(r, s)/wo Wb) 

g(r, s) = $(r, s)/wo WC) 

e(r, t) = - fh( T)g(r, t - T) dr 
Jo 

O(r, t) = - $ Jbh( T) af(:fe ‘) dr 

1 df(r, t> 
gk ‘) = g dt 

AH3 = - f(IOm) 0 J 
mf9(r, t) dt 

= -hoime(r, t) dt 

A H3 is the change in the enthalpy of D,. 

(334 

W) 

(334 

(34) 

(35) 

TWIN CALORIMETER SYSTEM 

The twin calorimeter system is widely used and is practically essential 
when high precision is sought with a heat conduction calorimeter. The 
system consists of two physically identical calorimeters symmetrically dis- 
posed within a thermostated environment. The thermal reaction under 
investigation is carried out in one of the calorimeters (the “laboratory” 
element), the other serving as the “reference” element. In the system, we do 

not measure the temperature of the laboratory element, TL, nor the dif- 
ference between the temperature of the element and that of its surroundings, 
T,_ - T,, but measure the difference TL - TR, where TR is the temperature of 
the reference element. Therefore, it is desirable to represent the equation in 
terms of the quantity to be measured, T,_ - TR. The equation can be derived 
in a manner analogous to the treatment of differential thermal analysis [9]. 

Equation (10) can be written for the laboratory element as 

dTI_ u(t) + C,x = &AL; 2 + POL + P(t) (36) 
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In the reference element, u(t) = 0 and P(t) = 0, so we can write 

The subscripts L and R refer to the laboratory and the reference element, 
respectively. Subtracting eqn. (37) from eqn. (36) and rearranging, we obtain 

dy dh 
u(t) + CL= + WI_ - G)--Ti-i_ 

aTR 
= &A,% + (%A_ - hdd~ + (PO, - Pod + P(t) (38) 

where 

y= TL- TR (39) 

is a measured quantity in the twin calorimeter system. In the steady state, y 
and TR become their convergence values, y, and TcR, respectively. Then we 
have 

It can be assumed that thermal effects in the laboratory element do not have 
any effects on the reference element, so that 

TR=TcR 
constantly applies throughout the whole course of the twin calorimeter 
experiment. Subtracting eqn. (40) from eqn. (38), we get 

u(t) + CL% = X,A,g + P(t) (41) 

where 

==y-Y, (42) 

is the deviation of the observed thermogram curve from the baseline. 
Similarly, we obtain an equation 

h(t) + C,,$ = ALA,& + P(t) (43) 

for the twin system in CASE 2. 
Equations (41) and (43) are similar in form to eqns. (12) and (30), and the 

previous results obtained in CASE 1 and CASE 2 are also valid for the twin 
calorimeter system. 
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MEASUREMENTS OF ENTHALPY CHANGE 

Equations (27), (28), (34) and (35) show that enthalpy change is propor- 
tional to the time integral of the temperature deviation from the convergence 
temperature, and that the proportionality, constant depends only on the 
physical structures of the calorimeter outside the reaction domain and does 
not depend on the nature and the state of the reactants. The equations 
provide a method for evaluating the enthalpy change in heat conduction 
calorimeter experiments. The method can be considered to be quasi-isother- 
mal and is an alternative to the quasi-adiabatic method usually used in 
isoperibol calorimetry. 

The theory of CASE 2 is preferred for measurements of high-temperature 
enthalpy in drop calorimetry and of enthalpy change in vigorous chemical 
reactions such as combustion. In these measurements, we cannot assume a 
uniform distribution of temperature and concentrations of reactants nor 
linear heat transfer inside the reaction vessel. The theory of CASE 2 does 
not require any assumptions regarding the reaction domain D, but assump- 
tions (a)-(e) are required for the domains outside the reaction domain. 

Equations (27) and (28) in CASE 1 can be used for estimating the 
enthalpy change for a reaction or a transformation, AHe., separately from 
the total enthalpy change, AH. However, AH becomes equal to AH, when 
the initial and final temperatures of the sample before and after the reaction 
are equal. 

THERMOKINETICS 

Recently, thermokinetic methods for obtaining the rate of enthalpy change 
for a chemical reaction from analysis of data on temperature changes in a 
calorimeter, often called deconvolution methods, have been developed [5-71. 
The theory of CASE 1 provides the theoretical basis and the fundamental 
equations, (17a-c) and (18a-c), for these deconvolution methods. 

One of the important conditions in the theory of CASE 1 is that the 
temperature and the concentration of the reactants inside the reaction 
domain are uniform (assumption (f)). Zielenkiewicz and Tabaka present a 
multi-domain theory which allows non-uniform distribution of temperature 
inside the calorimeter reaction vessel [lo], and they construct a calorimeter 
which has two thermometers and two calibrating heaters in the reaction 
vessel [ll]. They assume linear heat transfer between the domains and a 
constant heat capacity for each domain. Therefore, their theory cannot be 
applied to vigorous reactions accompanied by non-linear heat transfer and 
large changes in physical properties of the reaction system. Moreover, their 
theory does not show any clear principle as to how to divide a real 
calorimeter reaction vessel into separate domains. A calorimeter equipped 
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with two or more thermometers and heaters inside the reaction vessel seems 
to be rather complicated for use in “laboratory” calorimeter experiments. In 
such a “laboratory” calorimeter, it may be better to use heat distribution 
vanes or a stirring device inside the reaction vessel to produce uniform 
distributions of temperature and concentration of reactants inside the vessel. 
Their theory and method may be useful for analysis of “industrial’‘-scale 
calorimetry involving a moderate reaction. 

Assumptions (a) and (g) state that the thermal physical properties of the 
whole calorimeter system should be constant during the thermal change in 
the calorimeter, and they are further important necessary conditions for 
application in deconvolution methods. However, studies on time-varying 
calorimetric systems in which some thermal. physical properties vary linearly 
with time have been developed recently [12-151. Cesari et al. state that 
changes in sensitivity occur if the heat capacity of a calorimeter reaction 
vessel changes with time, C = C(t) [12]. They start from the simple 
Tian-Calvet’s equation for impulse heating, 6(t) 

c(t)g + PT= 8(t) (44) 
where P is the “heat transfer coupling constant” (their term in ref. 12) 
between the calorimeter reaction vessel and the thermostat. Integration of 
eqn. (44) gives 

J 

cc 
C(r)$-dr+PjWT(t)df=l (45) 

0 0 

They define the sensitivity S as the time integral of the temperature response 
for impulse heating 

S= ?(I) dt 
$ (46) 

0 

Equations (45) and (46) give 

11” 

s=p-p 0 1 
C(t) dT (47) 

and they conclude that the sensitivity S cannot be constant if the heat 
capacity of the reaction vessel C(t) changes with time. However, when the 
heat capacity C(t) changes within a limited range, it can be shown (as 
follows) that integration of the second term on the right-hand side of eqn. 
(47) becomes zero and that the sensitivity S is a constant equal to l/P. 
From the first mean value theorem of integration [16], we get 

L{T(co) - T(O)} <f=C(t) c-IT< U{T(m) - T(O)} 
0 

(48) 

where L and U are the lower and upper bounds of C(t) in the range 
0 < t -c 00. In usual heat conduction calorimeter experiments, we make 

T(0) = T(m) (49) 
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and then from eqn. (48) we get 

s 
‘=C(t) dT= 0 

0 
(50) 

and 

S=l/P (51) 

Ortin et al. have presented a model for a heat conduction calorimeter in 
which the heat capacity of the reaction vessel and the heat transfer coupling 
constant change with time, together with a method for analyzing experimen- 
tal data with a time-varying calorimeter system [14]. However, their model 
(ref. 14, Fig. 1) is not suitable for precise calorimetry. Their model has two 
thermal paths in parallel between the reaction vessel A, and the thermostat 
A, (notations A,-A, are introduced in the present paper for the sake of 
clarity). One path is a straight connection of A, and A,, and has a 
time-independent heat transfer coupling constant P,, between A, and A,. 
The other path is a series consisting of the vessel A,, two domains A, and 
A,, and the thermostat A,. The heat transfer coupling constant between A, 
and A, is assumed to be time-varying, P(t). In their model, the temperature 
response for any thermal effect in the reaction vessel is measured at the 
domain A,. They try to obtain the thermal power generated in the vessel A, 
from analysis of temperature changes in the domain A,. If the heat transfer 
coupling constant P12(t) changes with time, the ratio of the two heat flows 
from the vessel through the two paths changes with time. Let us now 
examine the most extreme case in which P,,(t) = 0. The temperature of A, 
becomes equal to that of A, and we cannot observe any temperature 
response in A *, irrespective of the heat evolution in the reaction vessel A,. 

ADVANTAGES OF ISOTHERMAL CALORIMETRY WITH POWER REGULATION 

Let us consider an isothermal calorimeter the temperature of which is 
controlled to a constant T, by regulation of power P(t). Putting T = T, = 

constant in eqn. (lo), we obtain an equation 

(52) 

for the isothermal calorimeter. When no reaction occurs, eqn. (52) becomes 

From eqns. (52) and (53), we get 

u(t) = P(t) -P, 

P, is regarded as the “baseline” power. 

(54) 
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Equation (54) tells us that we can obtain the rate of enthalpy change u(t) 
directly by measuring the power needed to regulate a constant calorimeter 
temperature. The total enthalpy change AH6 can be obtained by the time 
integration of eqn. (54) as follows 

AH, = /b’{ P(t) - PS} dt (55) 

where t, is the time to the end of the reaction period. 
The advantages of the isothermal calorimeter in thermokinetics are as 

follows: it does not need any complex treatment of time-temperature data 
such as the deconvolution methods used in heat conduction calorimetry; the 
necessary conditions for isothermal calorimetry are uniform temperature 
and concentrations of the reactants in the reaction vessel; no constant 
physical properties of the reaction system during thermokinetic measure- 
ment are necessary. 

The isothermal calorimeter also has an advantage in measuring the total 
enthalpy change, AH. In heat conduction calorimetry, the time required to 
complete the measurement of the enthalpy change is from time zero to a 
time when the temperature reaches the “baseline”, the convergence tempera- 
ture. The temperature deviation from the baseline, 8, does not become zero 
when the reaction stops and continues to decay to the baseline within the 
time required by the time constant of the calorimeter. On the other hand, in 
isothermal calorimetry, the measuring power P(t) reaches a baseline P, 
simultaneously with the cessation of the reaction under investigation, so that 
the time required for a complete measurement is shorter than that required 
in heat conduction calorimetry. 
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